Select Page
Flowise vs. 其他 AI 代理工具:哪個更適合您的需求?

Flowise vs. 其他 AI 代理工具:哪個更適合您的需求?

Flowise 是一款開源的低代碼工具,一般人也可以輕易地使用,用於構建自定義的大語言模型(LLM)編排流程和 AI 代理。透過直觀的拖放介面,使用者可以輕鬆設計複雜的 AI 工作流程,無需深入的程式設計知識。

Flowise 的主要特點:

  • 開源且免費:Flowise 完全開源,使用者可自由使用並進行二次開發,無需擔心授權問題。 GitHub
  • 低代碼開發:透過簡單的拖放介面,使用者可以快速構建 LLM 應用,縮短開發週期。 Flowise AI Docs
  • 多代理支援:Flowise 提供多代理系統,允許使用者設計可與外部工具和資料來源互動的代理,實現更高效的任務處理。 Flowise AI Docs
  • 靈活的工作流程設計:使用者可以根據需求,自定義工作流程的邏輯和順序,滿足不同場景的應用需求。 

Flowise 與其他 AI 代理工具的差異:

  1. Langflow 的比較:Langflow 專注於自然語言處理,提供可視化介面來構建和調試語言處理流程。相比之下,Flowise 更強調 LLM 的編排和代理的靈活性,適用範圍更廣。 
  2. Dify 的比較:Dify 致力於簡化 AI 應用的部署,提供一站式解決方案。而 Flowise 更專注於工作流程的設計和代理的構建,提供更大的自定義空間。 
  3. 與其他工具的比較:Flowise 的開源性和低代碼特性,使其在靈活性和可擴展性方面具有優勢,適合需要快速迭代和自定義需求的開發者。 

參考資料

Windows設置LLM環境變數的幾種方法

LLMs Server 還是需要放在 Linux 環境中比較好,但開發階段常常用 Windows 在開發,多數人使用的 Shell export 就沒法使用

export OPENAI_API_KEY="sk-...".

Windows中設置LLM環境變數的幾種方法解決方法

使用命令列 CMD

set OPENAI_API_KEY=sk-...

使用 PowerShell

[Environment]::SetEnvironmentVariable("OPENAI_API_KEY", "sk-...", "User")

放在 Python 程式中

import os

# 設置環境變數
os.environ['OPENAI_API_KEY'] = 'sk-你的API密鑰'

# 之後就可以使用這個環境變數了
# 例如,當使用OpenAI的API時,就可以從環境變數中獲取API密鑰
api_key = os.environ['OPENAI_API_KEY']
print("API Key:", api_key)

檢查是否有正確設置

echo %OPENAI_API_KEY%

相關資料

Aider Chat-邊聊邊寫程式

Aider Chat-邊聊邊寫程式

Aider 是一款突破性的 AI 程式設計助理,無論是終端操作還是透過瀏覽器,都可以享受與 Aider 的互動式編程體驗

多樣化運行模式

Aider 支援兩種運行模式:

  1. 本地模式:結合 Ollama 模型,支持用戶在本地執行各種大型語言模型(LLMs)。
  2. 瀏覽器模式:無需繁瑣的安裝配置,用戶只需透過瀏覽器即可啟動對話編程,輕鬆實現即時代碼編輯。

核心功能與亮點

Git 無縫整合

Aider 深度集成本地 Git 倉庫,讓程式碼管理變得簡單高效:

  • 代碼編輯:直接使用提示詞請求代碼修改、錯誤修復或改進功能,變更將即時應用至源代碼。
  • 自動提交:所有改動將自動生成具描述性的 Git 提交記錄,便於追蹤和審核。

直觀命令操作

用戶可通過多種命令與 Aider 互動,執行各類任務:

命令說明
/add將檔案新增到聊天中,讓 GPT 可以編輯或詳細檢查這些檔案。
/ask提出與程式碼庫相關的問題,無需編輯任何檔案。
/chat-mode切換到新的聊天模式。
/clear清除聊天記錄。
/clipboard將剪貼簿中的圖片或文字新增到聊天中(可選擇提供圖片名稱)。
/code請求對程式碼進行修改。
/commit提交在聊天外進行的編輯到程式庫(提交資訊為可選)。
/diff顯示自上次訊息以來的變更差異。
/drop從聊天會話中移除檔案以釋放上下文空間。
/exit離開應用程式。
/git執行一個 Git 命令。
/help提出與 Aider 相關的問題。
/lint對提供的檔案進行 Lint 檢查並修復;若未提供檔案,則修復聊天中的檔案。
/ls列出所有已知檔案,並指出哪些檔案包含在聊天會話中。
/map輸出當前程式庫的地圖。
/map-refresh強制刷新程式庫地圖。
/model切換到新的大型語言模型。
/models搜尋可用的模型列表。
/quit離開應用程式。
/read-only將檔案新增到聊天中,僅供參考,不能編輯。
/reset刪除所有檔案並清除聊天記錄。
/run執行一個 Shell 命令,並可選擇將輸出新增到聊天中(別名:!)。
/test執行一個 Shell 命令,若退出碼非零,則將輸出新增到聊天中。
/tokens報告當前聊天上下文使用的 Token 數量。
/undo如果上次 Git 提交是由 Aider 完成的,則撤銷該提交。
/voice記錄並轉錄語音輸入。
/web擷取網頁內容,轉換為 Markdown,並新增到聊天中。

完整命令列表涵蓋從文件管理到模型切換的全方位需求。

多模型支持

Aider 支援廣泛的 LLM,包括但不限於:

  • Ollama
  • OpenAI
  • Anthropic
  • DeepSeek
  • OpenRouter

安裝與使用

基礎安裝

透過 pip 安裝 Aider:

python3 -m pip install aider-chat

運行本地 Ollama 模型

export OLLAMA_API_BASE=http://127.0.0.1:11434
aider --model ollama/mistral

# Groq
export GROQ_API_KEY=sk-xx
aider --model groq/llama3-70b-8192

# OpenRouter
export OPENROUTER_API_KEY=sk-xx
# Or any other open router model
aider --model openrouter/<provider>/<model>
# List models available from OpenRouter
aider --models openrouter/

# Web
aider --browser

# GitHub 學習用
git clone https://github.com/mewmewdevart/SnakeGame
cd SnakeGame
aider

# 请解释这个项目的功能
# 这个项目是运用了哪些技术?
# 更改蛇的颜色为绿色,食物的颜色为红色

相關資料

Aider官網

Aider GitHub

Tencent Hunyuan-Large 騰訊混元模型

Tencent Hunyuan-Large 騰訊混元模型

Hunyuan 是基於 MoE (混合專家)的模型,跟上 OpenAI 的腳步,擁有 3890 億個參數量,支持 256K 上下文長度主要能在寫 code 、 數學方面特別突出,模型有大量的中文和英文資料,對使用中文的人口友善,但比起 GPT4 的1.8萬億參數還是差了一個數量等級

MOE

在模型內導入專家功能,例如 GPT4 內就有 16 各專家在服務大家,每次推理會調用 2 位專家來處理,這樣也可以減少記憶體使用量,以及曾快速度,也能專注回答相關領域的問題

相關資源

官網

混元模型論文

GitHub