Select Page
LiveKit-擁有自己的AI即時語音客服聊天小助理

LiveKit-擁有自己的AI即時語音客服聊天小助理

公開如何使用 OpenAI 配合 LiveKit 來實現會多國語言的小姐姐,可以即時回答您的問題,這個跟 Twilio 一樣的簡單和易用

取得 LiveKit key

利用 google 帳號登入 LiveKit Login 命名一個 project

並且到專案中的 settings -> KEYS ,取得 API KEY

程式碼

首先安裝相關依賴

pip install livekit-agents livekit-plugins-openai livekit-plugins-silero python-dotenv

設定環境變數

LIVEKIT_URL=""
LIVEKIT_API_KEY=""
LIVEKIT_API_SECRET=""
OPENAI_API_KEY=""

主要程式碼

import asyncio
from dotenv import load_dotenv
from livekit.agents import AutoSubscribe, JobContext,WorkerOptions, cli, llm
from livekit.agents.voice_assistant import VoiceAssistant
from livekit.plugins import openai, silero


load_dotenv()

async def entry(ctx: JobContext):
    chat_ctx = llm.ChatContext().append(
        role="system",
        text=("你是專業的助理,回答時候用專業的語氣回應。")
    )

    await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)

    asssitant = VoiceAssistant(
        vad=silero.VAD.load(),
        stt=openai.STT(),
        tts=openai.TTS(voice="nova"),
        llm=openai.LLM(model="gpt-4o-mini"),
        chat_ctx=chat_ctx
    )
    asssitant.start(ctx.room)

    await asyncio.sleep(1)
    await asssitant.say("你好,第一次見面,很高興認識你",allow_interruptions=True)


if __name__ == "__main__":
    cli.run_app(WorkerOptions(entrypoint_fnc=entry))

測試與驗證

道專案中,可以看到 Get started 中有支援各種的平台的程式碼以及 server 可以使用

價格說明

https://livekit.io/pricing

參考資料

https://livekit.io

https://github.com/livekit/agents

demo code

Deep Live Cam-簡單易用,被遮擋也沒關係的即時換臉

Deep Live Cam-簡單易用,被遮擋也沒關係的即時換臉

用有多張臉,即時更換人臉的開源軟體,而且有綠色直接使用版本,已經幫忙把環境都打包好了,給懶人使用,支援windows、MAC、GPU

必要條件

Git 原始碼

https://github.com/hacksider/Deep-Live-Cam.git

下載模型

  1. GFPGANv1.4
  2. inswapper_128.onnx (Note: Use this replacement version if an issue occurs on your computer)

並且將這兩個檔案放在 models 的目錄下

安裝相關依賴

pip install -r requirements.txt

參考資料

https://github.com/hacksider/Deep-Live-Cam

VOZO AI 快速製作電影等級的生日祝福

VOZO AI 快速製作電影等級的生日祝福

行銷人真的有越來越酷的各種AI工具,尤其在影片製作的方面,是百花齊放,各式各樣的應用一直冒出來,這個 VOZO AI 工具很適合做一些社交膜體上詪片

Rewrite 重寫功能

只要選定影片,就可以重新改變該影片的對白

Redub 重上字幕

可以快速叫出影片中的字幕,更改成自己的劇本,讓選定的影片按照你的劇本再上一次字幕,並且有翻譯功能

Repurpose 影片作成短影音

可以快速幫你把自己的影片或是youtube中的影片,快速剪輯一個短影音版本,可惜現在還是要以英文為主

支援多人口型同步

影片中有多人的話,可以支援多人的口型同步,這功能很新也很實用

自動多國語言翻譯

內建翻譯多國語言功能

價格參考

https://www.vozo.ai/pricing

參考資料

VOZO AI

GraphRAG 使用本地端的 Ollama

GraphRAG圖像檢索增強生成(Graph Retrieval-Augmented Generation,GraphRAG)超好用,但也超級貴,超級花錢,想要省錢的話,就要用本地端的服務如(Ollama),要用的話,可以按照下面的步驟處理,前提是你已經可以使用 OpenAI 版本的 GraphRAG 了,本篇是要把 OpenAI 改成 Ollama

講在前面

要先設定好 GraphRAG

下載以及安裝好 Ollama

安裝 ollama 的 Python 套件

pip install ollama

修改原先的 setting.yaml 檔案

把舊的 yaml 檔案改成 ollama 的設定檔,新的設定檔案如下

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  # model: gpt-4o-mini
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  # api_base: https://<instance>.openai.azure.com
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made

  # ollama api_base
  api_base: http://localhost:11434/v1
  model: llama3

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    # model: text-embedding-3-small
    
    # ollama
    model: nomic-embed-text 
    api_base: http://localhost:11434/api

    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  
chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 0

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 0

community_report:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: true # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: true # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: true
  top_level_nodes: true

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # max_tokens: 12000

global_search:
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

其中修改 llm 區塊

修改 model: llama3

加入 api_base: http://localhost:11434/v1

修改 embeddings 區塊

model: nomic-embed-text

api_base: http://localhost:11434/api

修改 GraphRAG 的程式碼

除了設定好 setting.yaml 以外,程式碼也要修改成可以支持 ollama 的程式碼,有兩處要改,可以用以下現成的程式碼

  1. C:\Users\xxx\anaconda3\envs\GraphRAG\Lib\site-packages\graphrag\llm\openai\openai_embeddings_llm.py

加入 ollama setting 區塊

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""The EmbeddingsLLM class."""

from typing_extensions import Unpack

from graphrag.llm.base import BaseLLM
from graphrag.llm.types import (
    EmbeddingInput,
    EmbeddingOutput,
    LLMInput,
)
import ollama

from .openai_configuration import OpenAIConfiguration
from .types import OpenAIClientTypes


class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    """A text-embedding generator LLM."""

    _client: OpenAIClientTypes
    _configuration: OpenAIConfiguration

    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self.client = client
        self.configuration = configuration

    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
    ) -> EmbeddingOutput | None:
        args = {
            "model": self.configuration.model,
            **(kwargs.get("model_parameters") or {}),
        }
        # openai setting
        # embedding = await self.client.embeddings.create(
        #    input=input,
        #    **args,
        #)
        #return [d.embedding for d in embedding.data]

        # ollama setting
        embedding_list=[]
        for inp in input:
            embedding = ollama.embeddings(model='qwen:7b', prompt=inp) #如果要改模型, 模型的名字要換掉
            embedding_list.append(embedding['embedding'])
        return embedding_list        
  1. C:\Users\xxx\anaconda3\envs\GraphRAG\Lib\site-packages\graphrag\query\llm\oai\embedding.py

加入 ollama setting 區塊,並且關閉 openai setting 區塊即可

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""OpenAI Embedding model implementation."""

import asyncio
from collections.abc import Callable
from typing import Any

import numpy as np
import tiktoken
from tenacity import (
    AsyncRetrying,
    RetryError,
    Retrying,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential_jitter,
)

from graphrag.query.llm.base import BaseTextEmbedding
from graphrag.query.llm.oai.base import OpenAILLMImpl
from graphrag.query.llm.oai.typing import (
    OPENAI_RETRY_ERROR_TYPES,
    OpenaiApiType,
)
from graphrag.query.llm.text_utils import chunk_text
from graphrag.query.progress import StatusReporter
import ollama

class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
    """Wrapper for OpenAI Embedding models."""

    def __init__(
        self,
        api_key: str | None = None,
        azure_ad_token_provider: Callable | None = None,
        model: str = "text-embedding-3-small",
        deployment_name: str | None = None,
        api_base: str | None = None,
        api_version: str | None = None,
        api_type: OpenaiApiType = OpenaiApiType.OpenAI,
        organization: str | None = None,
        encoding_name: str = "cl100k_base",
        max_tokens: int = 8191,
        max_retries: int = 10,
        request_timeout: float = 180.0,
        retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,  # type: ignore
        reporter: StatusReporter | None = None,
    ):
        OpenAILLMImpl.__init__(
            self=self,
            api_key=api_key,
            azure_ad_token_provider=azure_ad_token_provider,
            deployment_name=deployment_name,
            api_base=api_base,
            api_version=api_version,
            api_type=api_type,  # type: ignore
            organization=organization,
            max_retries=max_retries,
            request_timeout=request_timeout,
            reporter=reporter,
        )

        self.model = model
        self.encoding_name = encoding_name
        self.max_tokens = max_tokens
        self.token_encoder = tiktoken.get_encoding(self.encoding_name)
        self.retry_error_types = retry_error_types

    def embed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's sync function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        for chunk in token_chunks:
            try:
                # openai setting
                #embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)
                #chunk_embeddings.append(embedding)
                #chunk_lens.append(chunk_len)

                # ollama setting
                embedding = ollama.embeddings(model="nomic-embed-text", prompt=chunk)['embedding'] #如果要替換嵌入模型, 請修改此處的模型名稱
                chunk_lens.append(chunk)
                chunk_embeddings.append(embedding)
                chunk_lens.append(chunk_lens)                
            # TODO: catch a more specific exception
            except Exception as e:  # noqa BLE001
                self._reporter.error(
                    message="Error embedding chunk",
                    details={self.__class__.__name__: str(e)},
                )

                continue
        #chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
        #chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    async def aembed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's async function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        embedding_results = await asyncio.gather(*[
            self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks
        ])
        embedding_results = [result for result in embedding_results if result[0]]
        chunk_embeddings = [result[0] for result in embedding_results]
        chunk_lens = [result[1] for result in embedding_results]
        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)  # type: ignore
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    def _embed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = Retrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            for attempt in retryer:
                with attempt:
                    embedding = (
                        self.sync_client.embeddings.create(  # type: ignore
                            input=text,
                            model=self.model,
                            **kwargs,  # type: ignore
                        )
                        .data[0]
                        .embedding
                        or []
                    )
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

    async def _aembed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = AsyncRetrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            async for attempt in retryer:
                with attempt:
                    embedding = (
                        await self.async_client.embeddings.create(  # type: ignore
                            input=text,
                            model=self.model,
                            **kwargs,  # type: ignore
                        )
                    ).data[0].embedding or []
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

參考資料