Select Page

Views: 36

超大型語言模型(LLM)成為科技界矚目的焦點,以前這類模型通常需要極高的硬體門檻,要很多的 GPU 才能達成(需要好幾百萬),難以在本地設備上流暢運行。然而,現在配備 512GB 超大記憶體的 Mac Studio,約33萬台幣,就能輕鬆駕馭滿血版 DeepSeek R1,讓個人或企業用戶都能輕鬆享受超大型語言模型帶來的豐富應用價值!

為何 512GB 就足夠跑 DeepSeek R1?

DeepSeek R1 是一款擁有超過 6710 億參數的超級大型語言模型,理論上需超過 400GB 以上記憶體空間才能順暢載入。然而,DeepSeek R1 採用了特殊的 Mixture of Experts (MoE) 架構,儘管整體模型規模龐大,但實際上單次推理只會激活約 370 億參數,大幅減少記憶體的實際使用需求,讓 512GB 記憶體的 Mac Studio 就能輕鬆駕馭。

關鍵技巧:調整 VRAM 配置,釋放更大的 GPU 資源

Mac Studio 使用的是統一記憶體架構(Unified Memory),系統自動分配 GPU 使用的 VRAM 空間。預設情況下,VRAM是有限制的,不足以負荷 DeepSeek R1 這樣龐大的語言模型,但使用者可以透過調整系統參數,自由設定 GPU 的 VRAM 配置,以達到最大效能:

以下是關鍵指令:

sudo sysctl iogpu.wired_limit_mb=448000

透過這項設定,系統的 GPU VRAM 即可輕鬆擴展到 448GB,滿足 DeepSeek R1 等超大型模型的嚴苛需求,真正發揮 512GB 記憶體 Mac Studio 的硬體潛力。

⚠️ 貼心提醒:
調整 VRAM 前,建議備份重要資料。修改設定可能影響系統穩定性,請謹慎操作。

EXO 工具:連接多台 Mac,建立強大的分散式計算環境

如果你需要更強大的算力,還可以透過開源的 EXO 專案,將多台 Mac 電腦串聯起來,組成超強大的本地計算集群,以協同運行 DeepSeek R1 這類超大型語言模型。

透過 EXO,你可以:

  • 將多台 Mac Studio 連結成計算網絡。
  • 有效分散模型推理負載,提升整體效能。
  • 進一步降低單機的運算負擔,確保持續穩定運作。

這個方法尤其適合專業研究團隊、企業內部部署,甚至是有進階 AI 運算需求的開發者。

參考資料

https://zenn.dev/robustonian/articles/apple_silicon_vram