Select Page
如何使用 Groq API 快速測試和部署大型語言模型

如何使用 Groq API 快速測試和部署大型語言模型

Groq 是一家擁有高效能硬體運算的公司,提供大型語言模型(LLM)的推理運算提供加速解決方案,他們的硬體相較於傳統 GPU,更加快速,並且支援多種主流開源模型,包括 Llama 3、Mistral 等。

Groq API 的主要特色

1. 提供 Playground 供快速測試

為了讓開發者能夠直觀地體驗和測試模型,Groq 提供了線上 Playground。​使用者可以在此平台上直接輸入指令或問題,立即獲得模型的回應,無需進行繁瑣的設定或部署。​

2. 詳細的 API 文件

Groq 提供了詳細且易於理解的 API 文件,涵蓋從基本使用到進階功能的各種說明,協助開發者快速上手並整合到自己的專案中。​

3. 高速反應能力

得益於 Groq 的硬體架構,API 的反應速度極快,能夠即時處理大型語言模型的推理需求,提升使用者體驗。​

如何開始使用 Groq API

  1. 註冊並獲取 API 金鑰
    • 前往 Groq 官方網站,點擊「Login」或「Get API Key」,按照提示完成註冊並獲取 API 金鑰。​
  2. 選擇開發環境並調用 API
    • Python:​使用 OpenAI 兼容的客戶端調用 Groq 提供的模型。
import openai

openai.api_key = 'YOUR_GROQ_API_KEY'
openai.api_base = 'https://api.groq.com/openai/v1'

response = openai.ChatCompletion.create(
    model="groq/llama3-70b-8192",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "請介紹一下 Groq API 的特色。"}
    ]
)

print(response.choices[0].message['content'])

其他語言:​Groq 的 API 兼容 OpenAI 的接口,因此在其他編程語言中,只需將 API 基礎 URL 更改為 https://api.groq.com/openai/v1,並使用您的 Groq API 金鑰即可。

參考資料

Manus 沒邀請碼怎麼辦?用 OpenManus 本地免費部署 Ollama 模型,三分鐘搞定

Manus 沒邀請碼怎麼辦?用 OpenManus 本地免費部署 Ollama 模型,三分鐘搞定

🚀 1. 本地端完美對接 Ollama AI 模型

OpenManus 最大的亮點在於能與目前最流行的 Ollama 本地端 AI 大模型平台進行完美整合。

  • Ollama 是一個輕量、高效的 AI 模型管理工具,讓你可以輕鬆在自己的電腦上運行各種強大的大模型(如 Llama3、Qwen、DeepSeek 系列模型等)。
  • OpenManus 透過 Ollama API 與這些模型無縫互動,你能輕易在本地體驗到媲美線上服務的智慧功能,並保護個人隱私。

💻 2. 跨平台支援 Windows、Mac、Linux

無論你使用哪個平台,OpenManus 都有完整的跨平台支援,讓你輕鬆安裝與運行:

  • Windows 用戶可透過 Conda 或 Docker 快速部署。
  • macOS 用戶可以使用 Homebrew 或直接透過終端機運行。
  • Linux 用戶則能自由選擇 Docker 或直接透過原生方式安裝。

🎯 3. 無需邀請碼,即裝即用!

不同於原始封閉的 Manus 需要透過邀請碼才能使用,OpenManus 堅持完全開源與自由的精神。
無須註冊、無須邀請碼,直接部署到自己的電腦,立即開始使用,毫無限制,這就是開源社群給予大家最棒的禮物。


如何快速部署 OpenManus?(以 Windows 為例)

只需幾個簡單步驟,即可享受本地端 AI 大模型:

建立 Conda 環境:

conda create -n openmanus python=3.12
conda activate openmanus

Git OpenManus 專案:

git clone https://github.com/mannaandpoem/OpenManus.git
cd OpenManus

安裝所需依賴:

pip install -r requirements.txt

修改設定檔(config.toml):

cp config/config.example.toml config/config.toml

config.toml的內容如下,可以參考後修改

# Global LLM configuration
#[llm]
# model = "claude-3-7-sonnet-20250219"        # The LLM model to use
# base_url = "https://api.anthropic.com/v1/"  # API endpoint URL
# api_key = "YOUR_API_KEY"                    # Your API key
# max_tokens = 8192                           # Maximum number of tokens in the response
# temperature = 0.0                           # Controls randomness

# [llm] #AZURE OPENAI:
# api_type= 'azure'
# model = "YOUR_MODEL_NAME" #"gpt-4o-mini"
# base_url = "{YOUR_AZURE_ENDPOINT.rstrip('/')}/openai/deployments/{AZURE_DEPOLYMENT_ID}"
# api_key = "AZURE API KEY"
# max_tokens = 8096
# temperature = 0.0
# api_version="AZURE API VERSION" #"2024-08-01-preview"

[llm] #OLLAMA:
api_type = 'ollama'
model = "llama3.2"
base_url = "http://localhost:11434/v1"
api_key = "ollama"
max_tokens = 4096
temperature = 0.0

# Optional configuration for specific LLM models
#[llm.vision]
#model = "claude-3-7-sonnet-20250219"        # The vision model to use
#base_url = "https://api.anthropic.com/v1/"  # API endpoint URL for vision model
#api_key = "YOUR_API_KEY"                    # Your API key for vision model
#max_tokens = 8192                           # Maximum number of tokens in the response
#temperature = 0.0                           # Controls randomness for vision model

[llm.vision] #OLLAMA VISION:
api_type = 'ollama'
model = "llama3.2-vision"
base_url = "http://localhost:11434/v1"
api_key = "ollama"
max_tokens = 4096
temperature = 0.0

# Optional configuration for specific browser configuration
# [browser]
# Whether to run browser in headless mode (default: false)
#headless = false
# Disable browser security features (default: true)
#disable_security = true
# Extra arguments to pass to the browser
#extra_chromium_args = []
# Path to a Chrome instance to use to connect to your normal browser
# e.g. '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome'
#chrome_instance_path = ""
# Connect to a browser instance via WebSocket
#wss_url = ""
# Connect to a browser instance via CDP
#cdp_url = ""

# Optional configuration, Proxy settings for the browser
# [browser.proxy]
# server = "http://proxy-server:port"
# username = "proxy-username"
# password = "proxy-password"

# Optional configuration, Search settings.
# [search]
# Search engine for agent to use. Default is "Google", can be set to "Baidu" or "DuckDuckGo".
# engine = "Google"

啟動 OpenManus 服務:

python main.py

之後打開瀏覽器就可以了

測試 OpenManus :

可以輸入請他使用瀏覽器看某一個網站,並且執行SEO策略

打開 https://rain.tips/ 並且給予SEO的建議,並且把建議存放在桌面上.txt的文件

補充資料

Github

OpenRouter:輕鬆接入多種大型語言模型的統一平台

OpenRouter:輕鬆接入多種大型語言模型的統一平台

OpenRouter 是一個統一的大型語言模型(LLM)API 服務平台,可以讓使用者透過單一介面訪問多種大型語言模型。

主要特點:

  • 多模型支援: OpenRouter 集成了多種預訓練模型,如 GPT-4、Gemini、Claude、DALL-E 等,按需求選擇適合的模型。
  • 易於集成: 提供統一的 API 介面,方便與現有系統整合,無需自行部署和維護模型。
  • 成本效益: 透過 API 調用,使用者無需購買昂貴的 GPU 伺服器,降低了硬體成本。

使用方法:

  1. 註冊帳號: 使用 Google 帳號即可快速註冊 OpenRouter。
  2. 選擇模型: 在平台上瀏覽並選擇適合的模型,部分模型提供免費使用。
  3. 調用 API: 使用統一的 API 介面,將選定的模型整合到您的應用中。

Cline 整合

OpenRouter 與 Cline 的整合為開發者提供了強大的 AI 編程體驗,Cline 是一款集成於 VSCode 的 AI 編程助手,支援多種大型語言模型(LLM),如 OpenAI、Anthropic、Mistral 等,透過 OpenRouter,Cline 能夠統一調用這些模型,簡化了不同模型之間的切換和管理,使用者只需在 Cline 的設定中選擇 OpenRouter 作為 API 提供者,並輸入相應的 API 金鑰,即可開始使用多種模型進行開發。這種整合不僅提升了開發效率,還降低了使用多模型的技術門檻。

DeepSeek R1

OpenRouter 現在也支援 DeepSeek R1 模型,DeepSeek R1 是一款高性能的開源 AI 推理模型,具有強大的數學、編程和自然語言推理能力。透過 OpenRouter,開發者可以在 Cline 中輕鬆調用 DeepSeek R1 模型,享受其強大的推理能力。這進一步豐富了開發者的工具選擇,讓他們能夠根據項目需求選擇最適合的模型。

MusicGPT-可以在本地端執行的AI音樂生成器

MusicGPT-可以在本地端執行的AI音樂生成器

MusicGPT 可以讓使用者能夠在本地使用大型語言模型 (LLMs) 根據自然語言提示生成音樂的功能,他的重點放在文字條件音樂生成、旋律條件音樂生成以及生成無限長或無限音樂流的能力,今天要說明 MusicGPT 如何作為 Suno.ai 的開源替代方案,有甚麼樣的特色有甚麼樣的優缺點。

文字生成音樂

MusicGPT 的文字生成音樂,可以讓用戶輸入描述性文字或情感語言,然後在本地端的系統將其轉化為相應的音樂作品。這一功能對於想要通過音樂增強其敘事的作曲家和故事講述者特別有用,像是YT、小紅書、抖音,能夠完美匹配文本中描述的情緒或場景。無論是反映平靜月光夜的寧靜作品,還是回響著繁忙城市興奮感的活力曲目,MusicGPT 都能適應輸入文本的細微差別。

旋律生成音樂

旋律條件音樂生成將創新推向更深一步,允許用戶輸入特定旋律,MusicGPT 則以此為基礎生成完整的作品。這一功能非常適合那些有旋律想法但需要協助將其發展成完整作品的音樂家和作曲家。MusicGPT 不僅保留原始旋律,還增加了和聲、節奏和配器,提供豐富、飽滿的音樂體驗。

無限長音樂流

MusicGPT 最突破性的功能之一是其生成無限長的能力。這一功能對於遊戲背景音樂、冥想應用程序或公共場所的環境聲景等應用特別吸引人。與傳統的音樂曲目不同,MusicGPT 的作品可以根據需要持續進行,不斷演變而不重複。這創造了一個動態的聽覺環境,可以持續適應聽眾的需求或互動。

Suno.ai 的開源替代方案

MusicGPT 不僅在技術進步上脫穎而出,也因其作為開源解決方案的可訪問性而受到關注。與可能運行專有技術的平台如 Suno.ai 不同,MusicGPT 提供了一種透明、可定制的方法。用戶可以在自己的系統上本地運行它,利用大型語言模型的力量根據自然語言提示生成音樂。這不僅確保了創作過程的隱私和控制,也促進了以社群驅動的發展,其中改進和變化可以由全球用戶共享和實施。

參考資料:

MusicGPT官網:https://www.music-gpt.xyz

原始碼連結:https://github.com/gabotechs/MusicGPT