Select Page
Rope:您的一鍵換臉AI新工具選擇(千萬別拿去做壞事)

Rope:您的一鍵換臉AI新工具選擇(千萬別拿去做壞事)

Rope以其令人矚目的功能,站在了這場技術革新的前沿。這款AI工具不僅能夠輕鬆去除臉部遮擋,更整合了多種高清化算法,讓處理速度快如閃電。然而,在介紹如何安裝和使用Rope之前,我們必須提醒每一位用戶:這項強大的技術應當用於正當的創造和學術研究,千萬別拿去做壞事。現在,讓我們詳細了解如何在您的本地設備上安裝並運行Rope。

安裝必要軟體

在開始使用Rope之前,需要先安裝一些必要的軟體:

  1. 安裝Python
  2. 安裝FFmpeg
    • FFmpeg是處理影片不可或缺的組件,可以通過命令行進行安裝,或是參考我之前的ffmpeg教學
  3. Nvidia顯卡安裝CUDA
    • 為了充分發揮Rope的性能,Nvidia顯卡用戶應安裝CUDA 11.8,這對於AI運算至關重要。

安裝Rope

安裝了必要的軟體後,便可以開始安裝Rope:

  1. 下載Rope壓縮包
  2. 安装visual studio 2022
  3. 創建虛擬環境
    • 使用Python建立一個新的虛擬環境,這有助於管理依賴包和版本。
    • python -m venv venv
  4. 啟動虛擬環境
    • 透過命令行啟動虛擬環境,準備安裝Rope。
    • call venv\scripts\activate.bat
  5. 安裝依賴包
    • 在虛擬環境中,使用pip指令安裝Rope需要的所有依賴包。
    • pip install -r requirements.txt
    • 如果安裝失敗,要先執行下面的指令
    • pip install –no-cache-dir -r requirements.txt
    • pip uninstall onnxruntime onnxruntime-gpu
    • pip install onnxruntime-gpu==1.15.0
  6. 下載換臉模型

透過這些步驟,您可以在本地機器上成功安裝和配置Rope,並開始進行高效的臉部轉換。隨著AI技術的快速發展,Rope提供了一個既方便又強大的工具,使創意和創新更加無限。

操作指南:如何使用Rope進行批量換臉

請先確認安裝 Rope 已經成功,接著,遵循以下步驟來執行Rope的批量換臉功能:

  1. 打開命令提示字元
    • 輸入cmd並運行,以打開命令窗口。
  2. 進入Rope的本地根目錄
    • 使用cd命令切換到存放Rope應用程式的目錄。
  3. 激活虛擬環境
    • 通過執行call venv\Scripts\activate.bat指令來激活Rope的Python虛擬環境。
  4. 運行Rope主程式
    • 使用python run.py --execution-provider cuda指令,開始執行批量換臉處理。

自定義選項:提升處理質量與效率

Rope提供多個可選參數來滿足用戶的特定需求:

  • 面部增強
    • 加入face_enhancer選項,可以對換臉後的面部進行增強處理,使其更加清晰細緻。
    • python run.py –execution-provider cuda face_enhancer
  • 調整輸出視頻質量
    • 使用--video-quality選項並指定一個0到50的數值(數值越小,輸出質量越高)。
    • python run.py –execution-provider cuda –video-quality 1
  • 指定內存使用
    • 若需要管理程序的內存使用,可透過--max-memory選項設定最大內存限制。
    • python run.py –execution-provider cuda –max-memory 16
  • 指定執行線程
    • 對於較老的Nvidia顯卡,可使用--execution-threads來指定執行線程數,以達到最佳運行效能。
    • python run.py –execution-provider cuda –execution-threads 2
    • 預設是4

使用方法可以看YT

Rope又一款强大的一键换脸AI!可消除脸部遮挡,多种高清化算法,飞一般的处理速度!本地安装与参数使用详解。 – YouTube

解除roop检测深度换脸 – YouTubehttps://www.youtube.com/watch?v=YH4hB3wmRcQ

roop新奇用法:一键直播换脸、批量换图 – YouTube

Rope 分支

https://github.com/Hillobar/Rope/

https://github.com/s0md3v/sd-webui-roop