Select Page
OmniParser-微軟的開源螢幕解析工具

OmniParser-微軟的開源螢幕解析工具

繼之前提到的 Ahthropic Computer Use ,那時候超級驚豔的,馬上就看到MS也有推出自己的版本,雖然沒有自動執行功能,但可以配合 pyautogui 達成,雖然不支援中文,但可以透過中文OCR 或是 tesseract 處理

安裝到本地端

先建立一個虛擬環境起來

conda create -n omni python=3.12 -y
conda activate omni

選項:有GPU的,先把CUDA安裝起來

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

整個安裝也很簡單,就五個步驟

git clone https://github.com/microsoft/OmniParser.git && cd OmniParser
pip install -r requirements.txt
huggingface-cli download --repo-type model microsoft/OmniParser --local-dir weights --include "icon_detect/*" "icon_caption_blip2/*" "icon_caption_florence/*"
python /home/Ubuntu/OmniParser/weights/convert_safetensor_to_pt.py
python gradio_demo.py

OmniParser 1.5 更新

先下載模型

python weights/convert_safetensor_to_pt.py

For v1.5: 
download 'model_v1_5.pt' from https://huggingface.co/microsoft/OmniParser/tree/main/icon_detect_v1_5, make a new dir: weights/icon_detect_v1_5, and put it inside the folder. No weight conversion is needed. 

執行指令要改成 1.5 版本

python gradio_demo.py --icon_detect_model weights/icon_detect_v1_5/model_v1_5.pt --icon_caption_model florence2

支援其他的語言

舉例來說,要改成中文,請找到專案下的 utils.py ,將 en 改成 ch

reader = easyocr.Reader(['en'])
paddle_ocr = PaddleOCR(
#    lang='en',  # other lang also available
    lang='ch',  # other lang also available
    use_angle_cls=False,
    use_gpu=False,  # using cuda will conflict with pytorch in the same process
    show_log=False,
    max_batch_size=1024,
    use_dilation=True,  # improves accuracy
    det_db_score_mode='slow',  # improves accuracy
    rec_batch_num=1024)

在介面中選取使用 PaddleOCR

相關資源

OmniParser 原始碼

OmniParser 官網

OmniParser 模型

https://blog.stoeng.site/20241030.html

用AI操作電腦的這一天來了,Ahthropic Computer Use

用AI操作電腦的這一天來了,Ahthropic Computer Use

終於來到電影中的AI操作電腦的情節了,動動嘴巴就可以控制電腦,AI 透過 LLM 模型,知道你的意圖,在看你的電腦畫面,去決定要點選甚麼樣的位置,或是輸入甚麼樣的資訊,原來可以這麼簡單就實現用嘴巴操作電腦

準備 API Key

請先到這邊,https://www.anthropic.com/api,取得 API Key,等等 docker 建立的時候會用到

Docker 安裝 Ahthropic computer use

Linux / Mac

export ANTHROPIC_API_KEY=%your_api_key%
docker run \
    -e ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY \
    -v $HOME/.anthropic:/home/computeruse/.anthropic \
    -p 5900:5900 \
    -p 8501:8501 \
    -p 6080:6080 \
    -p 8080:8080 \
    -it ghcr.io/anthropics/anthropic-quickstarts:computer-use-demo-latest

Windows

export ANTHROPIC_API_KEY=%your_api_key%

docker run `
    -e ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY `
    -v $HOME/.anthropic:/home/computeruse/.anthropic `
    -p 5900:5900 `
    -p 8501:8501 `
    -p 6080:6080 `
    -p 8080:8080 `
    -it ghcr.io/anthropics/anthropic-quickstarts:computer-use-demo-latest