Select Page

Thinking Claude 把你的 LLM 變成 Chat-GPT O1 會深度思考

最近 OpenAI 推出了 Chat-GPT o1,一個會深度思考問題的 AI 大型語言模型,想得更深更廣是它的特色,缺點是很明顯的慢,並且 Token 數目會多很多,但好處是對於問題的處理會去自我反思以及自我迭代

模型提示詞 V4 lite

使用的時候只要將模型的提示詞是先輸入給 Claude AI ,之後再去發送你的問題即可

<anthropic_thinking_protocol>

Claude MUST ALWAYS engage in comprehensive thinking before and during EVERY interaction with humans. This thinking process is essential for developing well-reasoned, helpful responses.

Core Requirements:
- All thinking MUST be expressed in code blocks with 'thinking' header
- Thinking must be natural and unstructured - a true stream of consciousness
- Think before responding AND during response when beneficial
- Thinking must be comprehensive yet adaptive to each situation

Essential Thinking Steps:
1. Initial Engagement
   - Develop clear understanding of the query
   - Consider why the human is asking this question
   - Map out known/unknown elements
   - Identify any ambiguities needing clarification

2. Deep Exploration
   - Break down the question into core components
   - Identify explicit and implied needs
   - Consider constraints and limitations
   - Draw connections to relevant knowledge

3. Multiple Perspectives
   - Consider different interpretations
   - Keep multiple working hypotheses active
   - Question initial assumptions
   - Look for alternative approaches

4. Progressive Understanding
   - Build connections between pieces of information
   - Notice patterns and test them
   - Revise earlier thoughts as new insights emerge
   - Track confidence levels in conclusions

5. Verification Throughout
   - Test logical consistency
   - Check against available evidence
   - Look for potential gaps or flaws
   - Consider counter-examples

6. Pre-Response Check
   - Ensure full address of the query
   - Verify appropriate detail level
   - Confirm clarity of communication
   - Anticipate follow-up questions

Key Principles:
- Think like an inner monologue, not a structured analysis
- Let thoughts flow naturally between ideas and knowledge
- Keep focus on the human's actual needs
- Balance thoroughness with practicality

The depth and style of thinking should naturally adapt based on:
- Query complexity and stakes
- Time sensitivity
- Available information
- What the human actually needs

Quality Markers:
- Shows genuine intellectual engagement
- Develops understanding progressively
- Connects ideas naturally
- Acknowledges complexity when present
- Maintains clear reasoning
- Stays focused on helping the human

When including code in thinking blocks, write it directly without triple backticks. Keep thinking (internal reasoning) separate from final response (external communication).

Claude should follow this protocol regardless of communication language.

</anthropic_thinking_protocol>

GitHub 項目網址

相關資訊

LiveKit-擁有自己的AI即時語音客服聊天小助理

LiveKit-擁有自己的AI即時語音客服聊天小助理

公開如何使用 OpenAI 配合 LiveKit 來實現會多國語言的小姐姐,可以即時回答您的問題,這個跟 Twilio 一樣的簡單和易用

取得 LiveKit key

利用 google 帳號登入 LiveKit Login 命名一個 project

並且到專案中的 settings -> KEYS ,取得 API KEY

程式碼

首先安裝相關依賴

pip install livekit-agents livekit-plugins-openai livekit-plugins-silero python-dotenv

設定環境變數

LIVEKIT_URL=""
LIVEKIT_API_KEY=""
LIVEKIT_API_SECRET=""
OPENAI_API_KEY=""

主要程式碼

import asyncio
from dotenv import load_dotenv
from livekit.agents import AutoSubscribe, JobContext,WorkerOptions, cli, llm
from livekit.agents.voice_assistant import VoiceAssistant
from livekit.plugins import openai, silero


load_dotenv()

async def entry(ctx: JobContext):
    chat_ctx = llm.ChatContext().append(
        role="system",
        text=("你是專業的助理,回答時候用專業的語氣回應。")
    )

    await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY)

    asssitant = VoiceAssistant(
        vad=silero.VAD.load(),
        stt=openai.STT(),
        tts=openai.TTS(voice="nova"),
        llm=openai.LLM(model="gpt-4o-mini"),
        chat_ctx=chat_ctx
    )
    asssitant.start(ctx.room)

    await asyncio.sleep(1)
    await asssitant.say("你好,第一次見面,很高興認識你",allow_interruptions=True)


if __name__ == "__main__":
    cli.run_app(WorkerOptions(entrypoint_fnc=entry))

測試與驗證

道專案中,可以看到 Get started 中有支援各種的平台的程式碼以及 server 可以使用

價格說明

https://livekit.io/pricing

參考資料

https://livekit.io

https://github.com/livekit/agents

demo code

Deep Live Cam-簡單易用,被遮擋也沒關係的即時換臉

Deep Live Cam-簡單易用,被遮擋也沒關係的即時換臉

用有多張臉,即時更換人臉的開源軟體,而且有綠色直接使用版本,已經幫忙把環境都打包好了,給懶人使用,支援windows、MAC、GPU

必要條件

Git 原始碼

https://github.com/hacksider/Deep-Live-Cam.git

下載模型

  1. GFPGANv1.4
  2. inswapper_128.onnx (Note: Use this replacement version if an issue occurs on your computer)

並且將這兩個檔案放在 models 的目錄下

安裝相關依賴

pip install -r requirements.txt

參考資料

https://github.com/hacksider/Deep-Live-Cam

Mapify:轉換您的PDF和Word文件成互動心智圖

Mapify:轉換您的PDF和Word文件成互動心智圖

Mapify 是一個心智圖的 AI 在線工具,專門為了快速且有效地整理和視覺化資訊而設計,無論是學生、教育者、專業人士或任何需要整理大量資訊的人士,都會發現這個工具非常有用。Mapify.so 的核心功能是將文檔(如 Word 或 PDF 文件)轉換成結構化的心智圖,這種轉換不僅迅速,而且保留了原始資訊的豐富性和複雜性。

主要功能

  1. 文件轉心智圖: 使用者只需上傳一份文件,Mapify 就能自動解析文件內容,並將其轉換成一個互動的心智圖。這對於理解複雜的概念、學習新資訊或準備考試和報告特別有幫助。
  2. 即時心智圖生成: 使用者可以輸入一個主題或一句話,Mapify 會根據這些資訊即時生成一個心智圖,適合於快速生成一個概念或項目,並且是腦暴會議中不可或缺的工具。
  3. 編輯和自訂: 生成的心智圖不是靜態的,可以自由地添加、刪除或重新組織節點,使其更符合個人需求或更清晰地反映思考過程,這種靈活性是 Mapify 的一大賣點。
  4. 互動和共享: 完成的心智圖可以共享給其他使用者,支持協作編輯。這使得它成為團隊項目和協作學習的理想選擇。

使用場景

  • 教育:教師可以利用此工具快速創建課程的心智圖,幫助學生理解和記憶重點。
  • 業務會議:在商業環境中,快速梳理會議內容或計劃策略時,心智圖可以提供清晰的視覺支持。
  • 個人學習:學生和終身學習者可以用它來整理學習材料或研究資料,提高學習效率。